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Abstract In this article, the authors proposed a modified cubic B-spline differ-
ential quadrature method (MCB-DQM) to show computational modeling of two-
dimensional reaction–diffusion Brusselator system with Neumann boundary condi-
tions arising in chemical processes. The system arises in the mathematical modeling
of chemical systems such as in enzymatic reactions, and in plasma and laser physics in
multiple coupling between modes. The MCB-DQM reduced the Brusselator system
into a system of nonlinear ordinary differential equations. The obtained system of
nonlinear ordinary differential equations is then solved by a four-stage RK4 scheme.
Accuracy and efficiency of the proposed method successfully tested on four numerical
examples and obtained results satisfy the well known result that for small values of dif-
fusion coefficient, the steady state solution converges to equilibrium point (B, A/B)

if 1 − A + B2 > 0.
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1 Introduction

Reaction-diffusion models frequently arise in the study of chemical and biological
systems which are reaction–diffusion equations. The importance of oscillations in
biochemical systems has been emphasized by a number of authors’ e.g. Turing [1]
showed that when certain reactions are coupled with the process of diffusion, it is
possible to obtain a stable spatial pattern (which leads to the theory of morphogenesis).
The so-called Brussels school [2–5] developed and analysed the behaviour of a non-
linear oscillator associated with the chemical system

Bin → X,

Ain + X → Y + D,

2X + Y → 3X,

X → E, (1)

where Bin and Ain are input chemicals, D and E are output chemicals and X and Y
are intermediates. The chemical system (1), known as the “Brusselator” system, is
important in that it admits limit-cycle oscillations and yet contains only two dependent
variables (X and Y ) thus enabling the use of two-dimensional mathematical systems
[2]. It is known [7] that the trimolecular reaction step [third term in Eq. (1)] arises in
the formation of ozone by atomic oxygen via a triple collision, in enzymatic reactions,
and in plasma and laser physics in multiple couplings between modes. For more detail
see [6].

Finally, the non-linear system of partial differential equations associated with two-
dimensional reaction–diffusion Brusselator system is given by [7]

∂u

∂t
= B + u2v − (A + 1)u + α∇2u, (2a)

∂v

∂t
= Au − u2v + α∇2v (x, y, t) ∈ � × (0, T ] (2b)

together with initial conditions

(u(x, y, 0), v(x, y, 0)) = ( f1(x, y), f2(x, y)) (3)

and Neumann boundary conditions

∂u

∂n
= 0,

∂v

∂n
= 0, (x, y, t) ∈ ∂� × (0, T ] (4)

where u(x, y, t), v(x, y, t) represent dimensionless concentrations of two reactants,
A and B are constants concentrations of the two reactants, α is diffusion coefficient,
∇2 is Laplace operator and f1(x, y), f2(x, y) are suitably prescribed functions. It
is well known that for small values of the diffusion coefficient α, the steady state
solution of the Brusselator system (2) converges to equilibrium point (B, A/B) if
1 − A + B2 > 0 (see [6]).
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The reaction–diffusion Brusselator system contains a pair of variables intermediates
with reactant and product chemicals whose concentrations are controlled. The system
(2a) and (2b) represents a useful model for study of co-operative processes in chemical
kinetics. Such Brusselator system arises in the formation of ozone by atomic oxygen
via a triple collision. It also arises in the modeling of certain chemicals reaction–
diffusion processes such as in enzymatic reactions, and in plasma and laser physics
in multiple coupling between modes. The analytical solution of the system is not yet
known and therefore it is interested from numerical point of view.

In recent years, much attention has been paid in literature in the develop-
ment of numerical schemes for the numerical solutions of reaction–diffusion Brus-
selator system such as second order finite-difference scheme [6], decomposi-
tion method [7,8], dual-reciprocity boundary element method [9], Runge–Kutta–
Chebyshev method [10], collocation method using the radial basis functions [11],
differential quadrature method [12], homotopy perturbation method [13] etc.

In this article, a different technique based on modified cubic-B-spline functions
is proposed to find the weighting coefficients of differential quadrature method than
the traditional technique of Lagrange interpolation [14]. Then, the modified cubic-
B-spline differential quadrature method (MCB-DQM) is applied to solve the two-
dimensional reaction–diffusion Brusselator system. The MCB-DQM reduced the sys-
tem into a system of nonlinear ordinary differential equations. Finally, the obtained
system of nonlinear ordinary differential equations is then solved by a four-stage RK4
scheme given by Pike and Roe [15]. In order to demonstrate the accuracy and efficiency
of the proposed method, some test examples have chosen from literature.

2 Description of modified cubic B-spline differential quadrature method
(MCB-DQM)

Differential quadrature method [16] is a numerical technique for solving differential
equations. By this method, we approximate the spatial derivatives of unknown function
at any grid points using weighted sum of all the functional values at certain points in
whole computational domain. In two dimensional DQM, the first step is to discretize
the domain D = {(x, y) : a ≤ x ≤ b; c ≤ y ≤ d} as D1 = {(xi , y j ), i =
1, 2, . . . , N ; j = 1, 2, . . . , M} by taking step length �x = xi − xi−1 in x-axis
direction and �y = y j − y j−1 in y-axis direction. According to this method, the
first order partial derivative with respect to x of the dependent function u(x, y, t) (by
keeping the point y j fixed) is approximated at point xi as follows

ux (xi , y j , t) =
N∑

k=1

w
(1)
ik u(xk, y j , t), i = 1, 2, . . . N (5)

Similarly, the first order partial derivative with respect to y of the dependent function
u(x, y, t) (by keeping the point xi fixed) can be approximated at point y j as follows

uy(xi , y j , t) =
N∑

j=1

w
(1)
jk u(xi , yk, t), j = 1, 2, . . . N (6)
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where w
(1)
i j and w

(1)
jk are unknown and represent the weighting coefficients of the

first order partial derivatives w. r. t. x and y. There are many approaches to find
these weighting coefficients such as Bellman’s approaches [16], Quan and Chang’s
approach [17,18], and Shu’s approach [14]. Shu’s approach is very general approach
and in recent years most of the differential quadrature methods using various test
functions such as Legendre polynomials, Lagrange interpolation polynomials, spline
functions, Lagrange interpolated cosine functions, etc. are based on this approach.
These days in literature, most frequently used differential quadrature methods are
based on Lagrange interpolation polynomials and sine-cosine expansion. Korkmaz
and Dağ [19,20] proposed sinc differential quadrature method and cosine expansion
based differential quadrature method for many nonlinear partial differential equations
while Mittal et al. [12,21–23] have used polynomial based differential quadrature
method for numerical solutions of some nonlinear partial differential equations. Here,
the authors proposed one more approach based on modified cubic B-spline functions
to find the weighting coefficients except the above approaches.

2.1 Modified cubic B-spline functions

In this method, modified cubic B-spline functions are used to find the weighting
coefficients w

(1)
ik and w

(1)
jk . The cubic B-spline basis functions at the knots are defined

as follows

Bm(x) = 1

h3

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(x − xm−2)
3 x ∈ [xm−2, xm−1)

(x − xm−2)
3 − 4(x − xm−1)

3 x ∈ [xm−1, xm)

(xm+2 − x)3 − 4(xm+1 − x)3 x ∈ [xm, xm+1)

(xm+2 − x)3 x ∈ [xm+1, xm+2)

0 m = 0, 1, . . . , N + 1

(7)

where {B0(x), B1(x), . . . , BN (x), BN+1(x)} forms a basis over the domain �. The
values of cubic B-splines and its derivatives at the nodal points are tabulated in Table 1.
The cubic B-spline basis functions are modified in such way that the resulting matrix
system of equations is diagonally dominant. Modified cubic B-spline basis functions
at the knots are defined as follows [24]

�1(x) = B1(x) + 2B0(x)

�2(x) = B2(x) − B0(x)

�l(x) = B j (x), l = 3, 4, . . . , N − 2

�N−1(x) = BN−1(x) − 2BN+1(x)

�N (x) = BN (x) + 2BN+1(x) (8)

In the same way, the functions �l(x), l = 1, 2, . . . , N forms a basis over the domain
�.
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Table 1 Value of Bk (x) and its
first derivatives at the nodal
points

xm−2 xm−1 xm xm+1 xm+2

Bm (x) 0 1 4 1 0

B′
m (x) 0 3

h 0 −3
h 0

B′′
m (x) 0 6

h2
−12
h2

6
h2 0

2.2 To determine the weighting coefficients

Since y-axis is fixed in Eq. (5), so to find the weighting coefficients w
(1)
ik , put the

functions �m(x), m = 1, 2, . . . , N in Eq. (5), we have

�′
m(xi ) =

N∑

k=1

w
(1)
ik �m(xk), i = 1, 2, . . . N (9)

For any arbitrary choice of m, we have the following algebraic system of equations

⎡

⎢⎢⎢⎢⎢⎢⎣

�1,1 �1,2
�2,1 �2,2 �2,3

�3,2 �3,3 �3,4
· · · . . . . . .

· · · �N−1,N−2 �N−1,N−1 �N−1,N

· · · �N ,N−1 �N ,N

⎤

⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w
(1)
i1

w
(1)
i2

...

...

w
(1)
i N−1

w
(1)
i N

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

�′
1,i

�′
1,i

...

...

�′
N−1,i

�′
N ,i

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10)

The Eq. (10) are systems of tridiagonal algebraic system of equations for each i ,
which can solved by well known “Thomas algorithm” and whose solution provides
the coefficients weighting coefficients of first order derivative w

(1)
ik . For example, let

i = 1, we have following tridiagonal system of equations

⎡

⎢⎢⎢⎢⎢⎢⎣

6 1
0 4 1

1 4 1

1 4 0
1 6

⎤

⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w
(1)
11

w
(1)
12

...

...

w
(1)
1N−1

w
(1)
1N

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

−6/h
6/h
0
...

0
0

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

(11)

After solving the system (11) by using “Thomas algorithm”, we get the weighting
coefficients w

(1)
11 , w

(1)
12 , . . . , w

(1)
1N . In similar way, we can find the weighting coeffi-

cients for i = 2, 3, . . . , N . The second order and higher order derivatives can be
calculated by following recurrence formulas [14]
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w
(r)
i j = r

[
w

(1)
i j w

(r−1)
i i − w

(r−1)
i j

xi −x j

]
, f or i �= j

i, j = 1, 2, . . . , N ; r = 2, 3, . . . , N − 1
(12)

w
(r)
i i = −

N∑

j=1, j �=i

w
(r)
i j , f or i = j (13)

where w
(r−1)
i j and w

(r)
i j are weighting coefficients of (r − 1)th and (r )th order partial

derivatives with respect to x .
In the similar way, we can find out the weighting coefficients w

(1)
jk of first order

partial derivatives w. r. t. y by putting modified cubic B-Spline functions in Eq. (6) and
second order and higher order derivatives can be calculated by the recurrence formulas

w
(r)
i j = r

[
w

(1)
i j w

(r−1)
i i − w

(r−1)
i j

xi −x j

]
, f or i �= j

i, j = 1, 2, . . . , N ; r = 2, 3, . . . , N − 1
(14)

w
(r)
i i = −

N∑

j=1, j �=i

w
(r)
i j , f or i = j (15)

where w
(r−1)
i j and w

(r)
i j are weighting coefficients of (r − 1)th and (r )th order partial

derivatives with respect to y.

3 Numerical scheme based on MCB-DQM for reaction–diffusion Brusselator
system

Discretize the spatial derivatives by applying the modified cubic B-spline differential
quadrature method to the system of Eqs. (2)–(4), we get following system of non linear
ordinary differential equations

dui, j

dt
= B + u2

i, jvi, j − (A + 1)ui, j + α

(
N∑

k=1

w
(2)
i,k uk, j +

M∑

k=1

w
(2)
j,kui,k

)
(16)

dvi, j

dt
= Aui, j − u2

i, jvi, j + α

(
N∑

k=1

w
(2)
i,k vk, j +

M∑

k=1

w
(2)
j,kvi,k

)
(17)

with initial conditions

u(xi , y j , 0) = f1(xi , y j ), (xi , y j ) ∈ �

v(xi , y j , 0) = f2(xi , y j ), (xi , y j ) ∈ � (18)

where ui, j = u(xi , y j , t) and w
(2)
i,k , w

(2)
j,k are weighting coefficients of second order

partial derivatives of u(x, y, t), v(x, y, t) with respect to x and y respectively.
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3.1 Implementation of boundary conditions

The Neumann boundary conditions on boundary ∂� given in Eq. (4) can be approxi-
mated as

N∑

k=1

w
(1)
1,kuk, j = 0, (19)

N∑

k=1

w
(1)
N ,kuk, j = 0, j = 1, 2, . . . , M (20)

The Eqs. (19) and (20) can be written as follows

w
(1)
1,1u1, j + w

(1)
1,N uN , j = −

N−1∑

k=2

w
(1)
1,kuk, j (21)

w
(1)
N ,1u1, j + w

(1)
N ,N uN , j = −

N−1∑

k=2

w
(1)
N ,kuk, j (22)

Solving the Eqs. (21)–(22) for u1, j and uN , j , we get

u1, j = w
(1)
N ,N (S1) − w

(1)
1,N (S2)(

w
(1)
1,N w

(1)
N ,1 − w

(1)
1,1w

(1)
N ,N

) , j = 1, 2, . . . , M (23)

uN , j = w
(1)
1,1(S2) − w

(1)
N ,1(S1)(

w
(1)
1,N w

(1)
N ,1 − w

(1)
1,1w

(1)
N ,N

) , j = 1, 2, . . . , M (24)

where S1 = ∑N−1
k=2 w

(1)
1,kuk, j , S2 = ∑N−1

k=2 w
(1)
N ,ku.

Similarly, other Neumann boundary conditions can be approximated as

M∑

k=1

w
(1)
1,kui,k = 0, (25)

M∑

k=1

w
(1)
M,kui,k = 0, i = 1, 2, . . . , N (26)

Solving the Eqs. (25)–(26) for ui,1 and ui,M , we get

ui,1 = w
(1)
M,M (S3) − w

(1)
1,M (S4)(

w
(1)
1,Mw

(1)
M,1 − w

(1)
1,1w

(1)
M,M

) , j = 1, 2, . . . , M (27)

ui,M = w
(1)
1,1(S4) − w

(1)
M,1(S3)(

w
(1)
1,Mw

(1)
M,1 − w

(1)
1,1w

(1)
M,M

) , j = 1, 2, . . . , M (28)
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Table 2 Approximated solutions of Example 1 with A = 0.5, B = 1.0, α = 0.002 at different time and
mesh points

t (0.2, 0.2) (0.4, 0.6) (0.8, 0.9)

u v u v u v

1.0 1.8100 0.5873 2.3893 0.1968 3.1524 0.1489

2.0 1.4064 0.3414 1.4478 0.2971 1.7250 0.2538

3.0 1.1133 0.3998 1.1094 0.3877 1.2047 0.3536

5.0 0.9846 0.4851 0.9799 0.4858 0.9831 0.4748

7.0 0.9929 0.5028 0.9925 0.5035 0.9894 0.5032

8.0 0.9978 0.5022 0.9979 0.5026 0.9963 0.5031

9.0 0.9995 0.5010 1.0001 0.5011 0.9996 0.5016

10.0 1.0005 0.5002 1.0001 0.5003 1.0005 0.5005

↓
∞

↓
1.0

↓
0.5

↓
1.0

↓
0.5

↓
1.0

↓
0.5

where S3 = ∑M−1
k=2 w

(1)
1,kui,k , S4 = ∑M−1

k=2 w
(1)
M,kui,k .

In similar way, we can find out the boundary conditions for the variable v(x, y, t).
The system of nonlinear ordinary differential equations (16)–(17) with the initial

conditions (18) and boundary conditions (23), (24), (27) (28) cannot be solved directly
by Pike and Roe’s fourth-stage RK4 [15]. So, first apply boundary conditions on the
system (16)–(17) then we have a system of nonlinear ordinary differential equations
of the form

dU

dt
= F(U, V )

dV

dt
= G(U, V ) (29)

with initial conditions

U (0) = f1, V (0) = f2 (30)

where U = [u2,2, u2,3 . . . , u2,M , . . . , uN−1,2, uN−1,3, . . . , uN−1,M−1]T , V =
[v2,2, v2,3 . . . , v2,M , . . . , vN−1,2, vN−1,3, . . . , vN−1,M−1]T are (N − 2)(M − 2) × 1
dimensional vectors. The following Pike and Roe’s fourth-stage RK4 [15] is used to
solve the above system

⎧
⎪⎪⎨

⎪⎪⎩

U = U n

V = V n

H = F(U, V )

I = G(U, V )

→→→→→

⎧
⎪⎪⎨

⎪⎪⎩

U = U + �t
4 · F

V = V + �t
4 · G

H = F(U, V )

I = G(U, V )

(31)
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Fig. 1 Approximated solutions in 3D (left) and contour form (right) of Example 1 at times t =
1, 3, 5, 7, 10, 15 s respectively with �t = 0.001, N = 31
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Fig. 1 continued

⎧
⎪⎪⎨

⎪⎪⎩

U = U + �t
3 · F

V = V + �t
3 · G

H = F(U, V )

I = G(U, V )

→→→→

⎧
⎪⎪⎨

⎪⎪⎩

U = U + �t
2 · F

V = V + �t
2 · G

H = F(U, V )

I = G(U, V )

(32)

⎧
⎨

⎩

U n+1 = U + �t · F

V n+1 = V + �t · G
(33)

where F, G should be independent of variable t .

4 Numerical experiments and discussions

In this section, some test examples have considered to check the accuracy and effi-
ciency of the proposed method. The whole computation work is done with the help of
MATLAB 7.0, DEV C++ and time step �t = 0.001. L∞, root mean square (RMS)
and L2 errors are calculated by using following formulas

L∞ = max
1≤i≤N
1≤ j≤M

∣∣ui j
∣∣ , RM S =

√∑N
i=1

∑M
j=1

∣∣(ui j − ui j )
∣∣2

N × M
,

123



J Math Chem (2014) 52:1535–1551 1545

Table 3 Approximated solutions of Example 2 with A = 0.5, B = 1.0, α = 0.002 at different time and
mesh points

t (0.2, 0.2) (0.4, 0.6) (0.8, 0.9)
u v u v u v

1.0 0.5327 0.1708 0.5468 0.2150 0.5804 0.3078

2.0 0.7044 0.3729 0.7183 0.4028 0.7509 0.4622

3.0 0.8191 0.4954 0.8339 0.5092 0.8669 0.5333

5.0 0.9724 0.5304 0.9793 0.5282 0.9921 0.5228

7.0 1.0062 0.5037 1.0064 0.5026 1.0064 0.5007

8.0 1.0047 0.4996 1.0043 0.4993 1.0034 0.4988

9.0 1.0020 0.4989 1.0017 0.4989 1.0011 0.4990

10.0 1.0005 0.4993 1.0003 0.4993 1.0001 0.4995

↓
∞

↓
1.0

↓
0.5

↓
1.0

↓
0.5

↓
1.0

↓
0.5

L2 =
√√√√

N∑

i=1

M∑

j=1

∣∣(ui j − ui j )
∣∣2

where ui j , ui j are approximate and exact solutions respectively.

Example 1 [9,11] The system (2a) and (2b) is considered subject to Neumann bound-
ary conditions (4) and with initial conditions

{
f1(x, y, 0) = 0.5 + y
f2(x, y, 0) = 1.0 + 5x

Table 2 shows approximated solutions at different times and points with constants
A = 0.5, B = 1.0 and α = 0.002. It is clear from the table that solution converges to
equilibrium point (B, A/B) since 1− A+ B2 > 0 and satisfies the result discussed in
[6]. The concentration profiles of u in 3D and contour form are depicted in Fig. 1 for
time from t = 1.0 to t = 15.0 with A = 3.4, B = 1.0 and α = 0.002. These figures
are quite similar to those obtained in [10,12].

Example 2 [9,12] In this example, the two-dimensional reaction–diffusion Brussela-
tor system (2a) and (2b) is considered subject to Neumann boundary conditions (4)
and initial conditions

{
f1(x, y, 0) = 0.5x2 − 1

3 x3

f2(x, y, 0) = 0.5y2 − 1
3 y3

In this example, the constants A, B and α are taken as 0.5, 1 and 0.002 respectively.
Table 3 shows approximated solutions at different times and points and solutions
satisfy the well know result discussed in [6]. Figure 2 shows concentration profiles of
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Fig. 2 Approximated solutions in 3D (left) and contour form (right) of Example 2 at times t =
1, 3, 5, 7, 10 s respectively with �t = 0.001, N = 31
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Table 4 Approximated solutions of Example 3 with A = 1.0, B = 2.0, α = 0.002 at different time and
mesh points

t (0.2 ,0.2) (0.4, 0.6) (0.8, 0.9)

u v u v u v

1.0 2.3454 0.4163 2.4479 0.3956 2.6069 0.3693

2.0 2.0952 0.4689 2.1256 0.4605 2.1757 0.4478

3.0 2.0219 0.4916 2.0298 0.4889 2.0433 0.4844

5.0 2.0008 0.4996 2.0011 0.4995 2.0017 0.4993

7.0 2.0001 0.4999 2.0003 0.4998 2.0001 0.4999

8.0 2.0 0.5 2.0 0.5 2.0 0.5

9.0 2.0 0.5 2.0 0.5 2.0 0.5

↓
∞

↓
2.0

↓
0.5

↓
2.0

↓
0.5

↓
2.0

↓
0.5

u in 3D and contour form at time from t = 1.0 to t = 15.0. The Figure is very similar
to those obtained in [12].

Example 3 ([6,12]) Consider the Brusselator system (2a) and (2b) with Neumann
boundary conditions (4) and initial conditions

{
f1(x, y, 0) = 2.0 + 0.25y
f2(x, y, 0) = 1.0 + 0.8x

The results of the example are shown in Table 4 and Fig. 3 with constants A = 1.0 B =
2.0 and α = 0.002. Table 4 shows approximated solutions at different times and points
which converge to the equilibrium point (B, A/B) i.e. (2.0,0.5) while Fig. 3 depicts
concentration profiles of u in 3D and contour form at time from t = 1.0 to t = 8.0. It
is clear from the figure that the computed results are quite agree with results discussed
in [12].

Example 4 ([9,11]) In this example, the two-dimensional reaction–diffusion Brusse-
lator system is considered with the following exact solution

{
u(x, y, t) = exp(−x − y − 0.5t)
v(x, y, t) = exp(x + y + 0.5t)

The initial conditions are taken from the exact solution. Table 6 reports the L∞, RMS
and L2 errors with CPU time for the concentrations u and v are computed using with
the constants A = 1, B = 0, α = 0.25 at different values of time t . The errors
are computed with mesh points N = 21, M = 21 and similar to the error in [11].
Figure 4 depicts the concentration profiles of u in 3D and contour form at time from
t = 1.0 to t = 5.0.
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Fig. 3 Approximated solutions in 3D (left) and contour form (right) of Example 3 at times t = 1, 3, 5, 7, 8 s
respectively with �t = 0.001, N = 31
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Fig. 4 Approximated solutions in 3D (left) and contour form (right) of Example 4 at times t = 1, 3, 5 s
respectively with �t = 0.001, N = 21

5 Conclusion

In this article, the authors proposed a modified cubic B-spline differential quadra-
ture method (MCB-DQM) to show the computational modeling of two-dimensional
reaction–diffusion Brusselator system with Neumann boundary conditions. The pro-
posed method tested on four examples available in literature. The main outcomes of
the work are summarize as follows
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Table 5 Approximated solutions of Examples with A = 3.4, B = 1.0, α = 0.002 at different time and
mesh point (0.4, 0.6)

t Example 1 Example 2 Example 3

u v u v u v

1.0 0.8368 3.2762 0.2331 0.8850 0.6461 2.5522

2.0 0.6709 3.5366 0.2501 1.8699 0.3245 3.4457

3.0 0.4298 4.1448 0.2692 2.8515 0.3169 4.1375

5.0 0.4515 5.2417 0.3392 4.7821 0.4133 5.3282

7.0 3.6545 0.9481 1.4307 5.6919 4.6299 0.7520

8.0 1.4573 1.7857 7.5380 0.58519 1.7955 1.5454

9.0 0.4913 2.9030 0.6120 0.5117 0.5496 2.7299

10.0 0.3234 3.6883 9.6697 0.4555 0.3186 3.5706

Table 6 Maximum absolute L∞, RMS, L2 errors and CPU time of Example 4 at different time t

t u v CPU Time

L∞ RMS L2 L∞ RMS L2

0.5 1.337E−06 7.796E−06 1.637E−06 3.654E−06 9.482E−06 1.991E−06 02

1.0 3.241E−06 6.174E−06 1.296E−06 4.546E−06 1.239E−06 2.603E−06 06

1.5 1.526E−06 4.813E−06 1.010E−06 6.324E−06 1.593E−06 3.347E−06 07

2.0 1.354E−06 3.748E−06 7.872E−06 5.245E−06 2.046E−06 4.298E−06 10

3.0 1.134E−06 2.273E−06 4.475E−06 1.230E−06 3.374E−06 7.686E−06 15

(i) A different technique based on modified cubic-B-spline functions is proposed to
find the weighting coefficients of differential quadrature method than the tradi-
tional technique of Lagrange interpolation [14].

(ii) The proposed method gives very similar results to those discussed in [6,9–12]
and good accuracy for small number of grid points N = 31, M = 31 with small
computational cost i.e. CPU time.

(iii) Tables 2, 3, 4 show that the obtained results satisfy the well known result that
for small values of diffusion coefficient, the steady state solution converges to
equilibrium point (B, A/B) if 1 − A + B2 > 0 i.e. the approximated solutions
converge. But, Table 5 shows that for 1− A+ B2 < 0 the approximated solutions
not converge. The Figures in 3D and contour form show the real computational
modeling of two-dimensional reaction–diffusion Brusselator system.

(iv) In the proposed method, Neumann boundary conditions are very easy to handle
and easy to make the Matlab code of the method.

(v) The present method with some modifications can be easily extended to solve
model equations in two or higher dimensional problems including mechanical,
physical or biophysical effects, such as nonlinear convection, reaction, linear
diffusion and dispersion.
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